La inteligencia artificial ya predice la demanda de carga aérea mensual de cada aeropuerto
/COMUNICAE/
Los aeropuertos españoles pueden delegar en la inteligencia artificial (IA) la predicción de la demanda de carga aérea mensual por tipo de producto y origen-destino gracias a modelos avanzados elaborados por la consultora AIS Group, que se integran en una plataforma de gestión desarrollada en el marco del proyecto Muelle Digital
Muelle Digital es una iniciativa financiada por la UE dentro del Plan de Transformación y Resiliencia del Estado. En él, además de AIS Group, participan las empresas GPA, Portel, el Clúster Digital de Catalunya y el Clúster de Movilidad y Logística de Euskadi.
El objetivo es impulsar la digitalización del proceso de transporte terrestre y la recepción de mercancía en los muelles de la terminal de carga aérea, además de elaborar un cuadro de mando que permita visualizar desde el punto de vista estratégico la operativa de carga en un aeropuerto.
IA y Machine Learning
AIS Group, especialista en inteligencia artificial y analytics, ha construido dos tipos de modelo de IA tomando como fuentes la información histórica de carga, así como indicadores macroeconómicos relacionados con la operativa de transporte de mercancías, como puede ser el Producto Interior Bruto (PIB) o la balanza comercial.
El primer conjunto de modelos permite predecir la carga aérea por aeropuerto y por tipo de vuelo (carga o pasajero). En esta primera fase, para construir los modelos, se han tomado los datos relativos a los aeropuertos de Madrid, Barcelona, Zaragoza y Vitoria-Gasteiz, por lo que estas terminales podrían integrar ya en su día a día la plataforma Muelle Digital, que incorpora estos modelos para predecir el comportamiento de la demanda de carga área mensual.
Una de las conclusiones principales de este primer tipo de modelos es que aquellos que incluyen la información macroeconómica ajustan mucho mejor las predicciones respecto al volumen de carga (toneladas).
El segundo conjunto de modelos se centra en predecir la distribución de la carga por tipo de producto y por origen-destino. En su desarrollo se han utilizado técnicas avanzadas de IA, como el machine learning, que aumentan considerablemente el grado de acierto en las predicciones, dejando un error medio de los modelos de entre 10-15%, lo que desde AIS consideran un porcentaje notoriamente bajo.
Para ser más eficiente y facilitar la labor de los profesionales involucrados en la gestión de la carga, se ha programado un proceso automático que busca dentro de las miles de combinaciones de modelos posibles aquella que arroja los resultados más adecuados para cada una de las combinaciones, es decir, aeropuerto, avión de carga o de pasajeros, dirección del transporte, entre otros.
Proyecto financiado por la UE en tres fases
El proyecto Muelle Digital se estructura en tres fases. La primera acaba de finalizar con la versión inicial de una plataforma colaborativa para los operadores de la cadena de valor de la carga aérea y los primeros modelos predictivos de IA. En la siguiente fase, se sumará a la plataforma un proceso de declaración de mercancía peligrosa e indicadores medioambientales. En la última, se creará un corredor digital que incluya indicadores de datos de producción de las terminales de carga de cara a maximizar su eficiencia.
La carga aérea tiene un papel fundamental como facilitadora del comercio exterior y, por tanto, como generadora de crecimiento económico. Para asegurar su agilidad es preciso que los procesos entre sus agentes sean fluidos y rápidos, así como disponer de previsiones de actividad a corto plazo para dimensionar los equipos de trabajo.
Muelle Digital busca crear un servicio altamente eficiente que mejorará la competitividad del sector, ya que la solución planteada es trasladable a todos los aeropuertos de la red de AENA y a los agentes de otras regiones españolas. También puede adaptarse para que sea una solución exportable a otros países, puesto que contribuye a todos los agentes que participan en al proceso de exportación de mercancía por vía aérea. De hecho, los participantes están coordinando posibles pilotos en las siguientes fases del proyecto en los aeropuertos de Madrid, Barcelona, Bilbao, Zaragoza y Vitoria.
EPAM NEORIS inaugura su hub de Inteligencia… "NEORIS Artificial Intelligence Hub, powered by EPAM" tiene como objetivo impulsar la IA para que las empresas sean más competitivas,…
Los complementos alimenticios, cada vez más… AFEPADI e IQVIA presentan en Infarma un análisis actualizado sobre el mercado de los complementos alimenticios en el canal farmacia,…
Para ofrecer las mejores experiencias, utilizamos tecnologías como las cookies para almacenar y/o acceder a la información del dispositivo. El consentimiento de estas tecnologías nos permitirá procesar datos como el comportamiento de navegación o las identificaciones únicas en este sitio. No consentir o retirar el consentimiento, puede afectar negativamente a ciertas características y funciones.
Funcional
Siempre activo
El almacenamiento o acceso técnico es estrictamente necesario para el propósito legítimo de permitir el uso de un servicio específico explícitamente solicitado por el abonado o usuario, o con el único propósito de llevar a cabo la transmisión de una comunicación a través de una red de comunicaciones electrónicas.
Preferencias
El almacenamiento o acceso técnico es necesario para la finalidad legítima de almacenar preferencias no solicitadas por el abonado o usuario.
Estadísticas
El almacenamiento o acceso técnico que es utilizado exclusivamente con fines estadísticos.El almacenamiento o acceso técnico que es utilizado exclusivamente con fines estadísticos anónimos. Sin una requerimiento, el cumplimiento voluntario por parte de su proveedor de servicios de Internet, o los registros adicionales de un tercero, la información almacenada o recuperada sólo para este propósito no se puede utilizar para identificarlo.
Marketing
El almacenamiento o acceso técnico es necesario para crear perfiles de usuario para enviar publicidad, o para rastrear al usuario en un sitio web o en varios sitios web con fines de marketing similares.